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SHEDDING PATTERNS OF THE NEAR-WAKE VORTICES 
BEHIND A CIRCULAR CYLINDER 

JONG-YOUB SA* AND KEUN-SHIK CHANG 
Korea Advanced Institute of Science and Technology, PO Box i.50, Cheongryang, Seoul, Republic of Korea 

SUMMARY 

The unsteady incompressible Navier-Stokes equations have been accurately solved for the laminar flow 
past a circular cylinder in the Reynolds number range 50-200. A direct elliptic solver called the SEVP is used 
to rapidly advance the streamfunction in time, facilitating the overall convergence to the fully periodic or 
quasi-steady state. A new integral-series method is developed for the far-field streamfunction condition on a 
finite two-dimensional computational domain. The use of fourth-order Hermitian relations for the con- 
vection terms in the conservation-form vorticity transport equation has also contributed to the good 
comparison of the present results with the earlier experimental data. The vortex-shedding patterns 
visualized by the experimentalist are numerically reproduced here in the given Reynolds number range. 
Discussions that may be helpful in interpreting the behaviour of the shedding frequency are presented in the 
main text. 
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1. INTRODUCTION 

The viscous flow past a circular cylinder has attracted much attention from fluid dynamicists 
owing to the fundamental nature of the physics and the many engineering applications. A large 
volume of literature associated with this particular subject attests the importance as well as 
complexity of the fluid flow concerned. 

The Karman vortex street behind a circular cylinder has been extensively investigated in the 
Reynolds number range 50-200. Zdravkovich found experimentally a simple mechanism 
responsible for the formation of the Karman vortex street in the Reynolds number range 50-120, 
i.e. the instability-caused sinuous oscillation of the far wake. Similar observations were also 
reported by Taneda' and Aref and Siggia.3 Perry et al.,4 on the other hand, proposed the concept 
of instantaneous 'alley-way' as a different mechanism for vortex street formation for a Reynolds 
number of order 100. They observed that it penetrated the wake cavity behind the cylinder and 
the vortex sheet was folded up in the way that Gerrard5 indicated. Numerical investigation of 
vortex shedding has been also made by various authors such as Jordan and Fromm,6 mar tine^,^ 
Lecointe and Piquet,* Braza et al.,9 Borthwick," Eaton" and Gresho et al." Despite all these 
contributions, a theoretical account of shedding patterns has been relatively omitted from the 
literature. 

The vortex-shedding frequency A which alternatively implies the freestream velocity U ,  was 
measured earlier by Kovasznay. An experimental correlation between the Strouhal number 
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( S t  = f d / U ,  where d is the cylinder diameter) and the Reynolds number (Re  = U d / v ,  where v is 
the kinematic viscosity) was obtained by R o ~ h k o ’ ~  as a smooth function in the Reynolds number 
range 50 d Re d 150. In contrast, T r i t t ~ n ’ ~ ’ ~ ~  reported from his experiment two modes of 
shedding frequency observed for the St-Re relation: the ‘low-speed mode’ in the range 
50 d Re d 105 and the ‘high-speed mode’ in the range 80 d Re d 150. He thought that the 
transition from the low-speed to the high-speed mode was due to the change of vortex-shedding 
mechanism near Re = 80. Berger17 suggested from a careful experiment a third frequency law of 
vortex shedding, the so-called ‘basic mode’. Another of his experiments18 revealed that with an 
extremely low level of turbulence in the freestream the previous basic mode proved merely an 
extension of the low-speed mode, and that there existed a unified basic mode in the range 
50 < R e  6 160. He thought that the mode transition was closely related to the freestream 
turbulence level. Berger and WilleIg presented an early review on this controversy. 

There appeared recently two additional interesting experiments related to the mode transition. 
Van Atta and Gharib2’ found a discontinuity of the shedding frequency caused by vortex- 
induced vibration, which was certainly not the kind of earlier transition. Williamson2 observed 
transition of the frequency mode due to the oblique shedding from a cylinder with endplates at 
each end. The year-long controversy about the mode transition seems to be satisfactorily resolved 
by Williamson’s interesting experiment. In contrast, the recent numerical study by Karniadakis 
and Triantafyllou22 suggested a smooth St-Re curve. 

In the present paper the vortex shedding from a circular cylinder has been simulated in the 
Reynolds number range 50 d Re d 200 using an efficient and accurate numerical method 
developed by the authors. It was found that no mode transition appeared for the vortex-shedding 
frequency despite the various artificial freestream disturbances introduced in the present calcu- 
lation. The vortex-shedding mechanisms claimed earlier by the experimentalists were also 
identified. 

2. MATHEMATICAL PRELIMINARIES 

A circular cylinder of radius a is transversely placed in a uniform flow of velocity U .  The 
governing equations are first written in cylindrical polar co-ordinates (r, 0). Co-ordinate stretch- 
ing r = en< and 0 = nq is applied to obtain the grid concentrated near the cylinder. The governing 
equations in conservative form are 

The vorticity [ and the streamfunction $ are advanced in time by integrating equations (1) and (2) 
numerically. Central differencing is used for the diffusion terms. The contravariant velocity 
components in the convection terms of equation (l), $< and $,, are approximated by a fourth- 
order finite differencing called the Hermitian relation, which is discussed in the following section. 
Equation (1) is solved by the Euler explicit finite difference scheme and equation (2) by a direct 
elliptic solver explained below. The present unsteady problem requires a large number of time 
steps and it is mandatory that an efficient non-iterative elliptic solver be installed in the computer 
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code. It should be noted that many earlier time-dependent flow computations about a cylinder 
had to be confined to starting motion or the early transient state before a fully periodic flow was 
brought into the physics. 

The error vector propagation (EVP) m e t h ~ d ’ ~ - ’ ~  is a direct method applicable to any type of 
elliptic equations. However, as shown by McAvaney and Leslie,26 EVP is unstable when the 
number of grid points is large. MadalaZ7 proposed a modification of this method called the SEVP 
(stabilized EVP) which is stable for any number of grid points and retains most of the advantages 
of the earlier EVP. In the SEVP method the integration region is divided into directional blocks, 
each of which is not taken large so that the EVP method remains stable. We have used the five- 
block SEVP method on 51 x 50 grid systems, with A{ = 0.02, Arj = 0.04 and A t  = 0.05. 

The four boundaries (AB, BCD, DE and EFA) shown in Figure 1 require boundary condi- 
tions. An approximate form of the boundary data for the vorticity and the streamfunction would 
be on t = O  (EFA) 

-~~ ~. 

-~ 

i w  = - * c  I w + 1 /(ze“9’ At;, *, = 0, 
.~ 

and on 5 = t,,, (BCD) 

i = 0 (at inflow boundary where a$/arj < 0), 

a i / a t  = 0 (at outflow boundary where a$/drj > 0), 

$ = $far 

In the above, $far is the far-field streamfunction at the boundary of a finite computational domain 
evaluated by the integral series to be explained shortly. On the cut boundaries r j  = 0 (z) and 
r j  = qmax (ED) a continuous condition is imposed from 8 = 272 to 8 = 0. 

When the vortex is shed from the rear of the cylinder, periodic excursion of the forward 
stagnation point on the front part of the cylinder surface makes the wall streamfunction $, 
oscillate. Jordan and Fromm6 calculated the vortex shedding from a circular cylinder taking this 
migration into account. In the present problem, however, the Reynolds number is low so that the 
oscillation of the wall streamfunction remains extremely small. We neglected this effect to save on 

~ 

U € = O  

Figure 1. Flow geometry 
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computer time, following the practice of Borthwick. l o  A test calculation in the present work 
showed that the amplitude of the wall streamfunction oscillation was about 0.02 at Re = 100 and 
it hardly influenced the drag coefficient, Strouhal number, vortex-shedding patterns, etc. 

The lift and the drag coeficients are defined by the equations 

Integrations in the above are performed around the body surface. The wall pressure is evaluated 
by the finite difference 

which is an approximation of the following pressure condition to second order: 

Experimental flow visualization requires various physical tracers such as hydrogen bubbles, 
tufts, smoke particles and dyes. The point markers adopted in the present study as a numerical 
tracer were found to be a superior choice in visualizing the detailed structure of the near-wake 
vortices, as has also been demonstrated by Davis and c o - w o r k e r ~ ~ * * ~ ~  and Eaton." The point 
markers were discharged from 14 different locations in the rear part of the circular cylinder in the 
present paper. 

3. ON THE NUMERICAL ACCURACY 

Accuracy of the numerical method cannot be overemphasized in simulating fluid flows, especially 
in the near wake of a cylinder where the flow is very unsteady and has large property gradients 
owing to the alternate vortex shedding. Care has been taken in the present paper to improve 
numerical accuracy in treating the two conventionally error-prone items: the non-linear convec- 
tion terms and the far-boundary streamfunction condition. 

The convection terms of equation (1) are in conservative form and can be discretized by central 
differencing as 

If the central difference was repeatedly applied to the contravariant velocity components $< and 
$q, the intended overall second-order accuracy in space as well as the conservation property of 
equations (Sa) and (5b) would be impaired (see the result at Re = 200 in Figure 4). The fourth- 
order Hermitian relation3' is hereby adopted as a numerical model of the contravariant 
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velocities: 

The boundary conditions for equations 6(a) and 6(b) are 

I,$, = periodic at q = 0 and q = qmax. 

Chamberlain and Liu3' previously employed an integral-series expansion method to evaluate 
the vector potential at the far boundary of an unbounded domain containing two interacting 
vortex rings, adopting an earlier formulation of Ting. 32 Application of this series expansion 
method has been so far limited to the vortex-dominated flow in an open domain without any solid 
body within. We developed here a more generalized integral-series method for the far-field 
streamfunction condition $far applicable for any number of solid bodies within an unbounded 
domain. It is an extension of the earlier work by Sa et al. j3 

We consider the Poisson equation for the streamfunction 

v2* = -[. (7) 

The above equation can be transformed to a Poisson integral 

where we have employed the following definitions with the integration variable ro: 

The last item in the above is the wall velocity component in the counterclockwise direction. The 
line integral in equation (8) should therefore vanish if the wall is stationary. As shown in Sa and 
Chang,34 the streamfunction in equation (8) can be expanded at the far boundary as a power 
series of r - l: 

(9) 
FO 1 3 1  

$far = U y  - Yx - - h ( r )  + - - [ F,cos(nO) + G,sin(nO)]r-" + O ( F 4 ) ,  
2 n  271 n 
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where 
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F, = j / [ (x3 - 3xy2)dS, G ,  = /j[(3x2 y - y 3 )  dS. 

In the present problem under consideration, F,, = 0 is assumed because $far (at 8 = 0 or n) is 
nearly zero at  low Reynolds number around 100. The right-hand side of equation (9) consists of 
the freestream value of the streamfunction (the first two terms) plus the local correction terms 
made by contributions of G, and F,. The importance of these correction terms should not be 
underestimated when the computational domain has to be finite. Accuracy of the integral-series 
method is briefly discussed in the following section. 

4. RESULTS AND DISCUSSION 

The performance of the present integral-series far-boundary streamfunction condition in com- 
parison with the conventional methods (the freestream condition, the potential flow condition 
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Figure 2. Coniparison of numerical accuracy for different computational domains (Re = 100):34 (a) drag coefficient; 
(b) Strouhal number 
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and the Neumann condition) was studied in our previous paper34 for the flow past a circular 
cylinder at Re = 100. As shown in Figure 2, which is a reproduction, the integral-series condition 
gives the result nearest to the asymptotic value that would be obtained with an infinite 
computational domain ( r ,  = a). The freestream function condition and the potential flow 
condition showed a similar order of accuracy while the Neumann condition for the perturbed 
streamfunction failed to give any quasi-steady solution. The result of Gresho et al. l 2  shows well 
that the drag coefficient and the Strouhal number have quite large values for a small com- 
putational domain of r ,  z 9 with the freestream boundary condition when compared with other 
experimental and numerical results. A more detailed accuracy test can be found in Reference 34. 

The present computation achieved strictly periodic vortex shedding for Re = 100 at about 
t = 2000. When a disturbance was introduced into the freestream in the form of u = u, sin(2nt/T,) 
during 1 < t d 1 + T, ,  the vortex shedding reached the fully periodic state more rapidly without 
affecting the end result. The closed cycle of the lift-drag phase relation is demonstrated in 
Figure 3 for Re = 60 and 200, attesting the strict periodicity of the present result. The shedding 
frequency can be evaluated with the temporal period of the curves. 

The Strouhal number, the drag coefficient and the shedding pattern calculated by the present 
method all agreed well with the earlier experimental results. In Table I the Strouhal numbers 
from the literature are listed for Re = 100, 150 and 200. It is concluded that the present result 
gives quite reasonable prediction. Figure 4 gives a comparison of the drag coefficients obtained 
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Figure 3. The lift-drag phase cycle: (a) Re = 60; (b) Re = 200 

Table I. Comparison of Strouhal number 

Classification Contributor R e =  100 R e =  150 R e = 2 0 0  Remarks 

Numerical Present 0.155 0.173 0.186 Strictly periodic 
Strictly periodic Jordan and Fromm6 0.16 

Lecointe and Piquet * 0.194 Transient 
0.16 0.20 Transient Braza et aL9 

Borthwick l o  0.188 Nearly periodic 

Experimental RoshkoI4 0.1 7-0.19 
Berger ' ' 0.171 
Nishioka and  sat^^^ 0.151 
Friehe ' 0.145-0.1 65 0.1 65-0.1 85 
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Figure 4. Time-averaged drag coefficients. Experimental: I, Trittont5. Numerical: Y, Lecointe and Piquet ’; +, Braza 
et aL9; x ,  Eaton”; A ,  Jordan and Fromm6; 0, Borthwick”; 0, present result with central differencing; 0, present 

result with Hermitian relation 

from various numerical methods with Tritton’s experimental data. The present result agrees well 
with Tritton’s available data for Re < 100. At higher Reynolds number, where experimental data 
are lacking, it is seen that the present result becomes most plausible among the many numerical 
methods as an extrapolation of Tritton’s experimental data. The same figure also shows that the 
drag coefficient calculated by the central differencing as a test case at Re = 200 is drastically 
different from the present result of the Hermitian relation. The data points of Lecointe and 
Piquet’ and Braza et d9 are even further away from the present result at Re = 200. 

The instantaneous streamlines for vortex shedding are shown in Figure 5 for the three different 
Reynolds numbers. Although useful for interpretation of the shedding mechanism as Reference 4, 
the instantaneous streamline seems to be inadequate for visualizing the shedding pattern because 
the three flows are not much distinguished in Figure 5. This handicap of streamlines can be neatly 
solved by choosing the streaklines as an alternative tool. The numerical markers in Figure 6 
presents shedding patterns remarkably similar to those experimental ones published in the 
literature. In the experiment, however, the smoke or dye particles are usually so congested in the 
immediate near wake that the detailed flow structure becomes quite ambiguous. 

Tritton 1 5 * 1 6  suggested that near the transition Reynolds number of about 80 there was a 
change in the basic structure of the vortex street. Since the separated shear layer is rather weak 
near the Reynolds number 60, the fluid outside the wake in Figure 6(a) is hardly entrained in the 
wake cavity. As the Reynolds number increases, the entrainment and the consequent roll-up of 
the vortex sheet are prominent, as shown in Figures 6(b) and 6(c). 

From Figures 5 and 6 we have noted that the vortex-shedding pattern can be better visualized 
by the streakline than by the streamline. The first plot for Re = 60 in Figure 6 does not show the 
roll-up of the vortex sheet, while that for Re = 150 indicates a strong roll-up process. Loss of 
numerical markers along the vortex sheet in the wake region and the increased role of both the 
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Figure 5. Instantaneous streamlines: (a) Re = 60; (b) Re = 100, (c) Re = 150 

alley-way (introduced by Perry et d4) and the vortex roll-up can be clearly observed in the last 
two plots of Figure6. For further investigation of the change in shedding patterns we have 
plotted Figure 7, which shows the oscillating lift coefficient by its magnitude. The rather abrupt 
but not discontinuous change of slope of this curve at  Re = 80 may be taken as evidence of such a 
change. 

The shedding frequency calculated in the present study is compared in Figure 8 with other 
experimental results. The Strouhal number is evaluated by the temporal cycle of the lift-drag 
phase relation curves shown in Figure 3. In contrast to the smooth St-Re curve provided by 
Roshkol4 in the Reynolds number range 50-150, the curves by Tritton” exhibited two modes of 
shedding frequency of which the bifurcation is located near Re = 80. The curve for Re < 80 is 
called the low-speed mode and that for Re > 80 is called the high-speed mode. He conjectured 
that the transition from the low-speed to the high-speed mode was due to the change of the 
shedding mechanism. Berger ” 7  ” observed a third frequency law, the ‘basic mode’, in the 
Reynolds number range 120-160, with an extremely low level of freestream turbulence in his 
experiment. With a higher turbulence level, however, the high-speed mode was the rule of nature 
in the same Reynolds number range. He thought that the freestream turbulence level was closely 
related to Tritton’s mode transition. 

There are two recent experiments on shedding frequency worth mentioning. Van Atta and 
Gharib” have experimentally observed a discontinuity in the St-Re curve caused by the induced 
vibration. It is found that when the natural vortex-shedding frequency (for a fixed cylinder) is near 
the natural frequency of the cylinder vibration, the shedding frequency becomes in resonance with 
the latter, causing a discontinuity on the St-Re curve. However, this discontinuity has to be 
distinguished from the mode transition: the lock-in phenomenon of the vortex shedding merely 
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Figure 6. Streaklines: (a) Re = 60; (b) Re = 100, (c) Re = 150 

causes a discontinuity in frequency, not the mode transition. Another interesting recent experi- 
ment by Williamson” showed the mode transition due to the oblique shedding from a cylinder 
with endplates at each end. Although the endplate condition of his cylinder is certainly different 
from that of Tritton and his result does not seem to explain Berger’s observation concerning the 
effect of upstream turbulence, Williamson’s result seems to be very reasonable and interesting. 
The influence of the endplates on the shedding frequency was also investigated by Gerich and 
E~kelmann.~’  Karniadakis and Triantafyllou” have recently studied another St-Re relation 
numerically, thus showing the continued research interest in the subject of vortex shedding from a 
circular cylinder. 

As a different kind of application of the numerical method developed in the present paper, the 
authors have experimented on the influence of the freestream disturbances introduced artifi- 
cially. First, a spatially uniform disturbance in the freestream speed was tried in the form of 
U‘ = U[1 + ~s in (2nf t ) l  with f =  1,2,5 and E = lo-’, lo-’, etc. Secondly, a spatially 
uniform disturbance in the freestream speed having random frequency was examined. Thirdly, a 
random vorticity perturbation was introduced into the freestream under the constraint that the 
total perturbed vorticity vanishes. The mode transition has not been observed for any of these 
cases. It is thus believed that the mode transition cannot be possible in the absence of three- 
dimensional effects, as was shown by Williamson. 

5 .  CONCLUDING REMARKS 

The two mathematical traits of the present paper-the Hermitian relation used for the convection 
terms in the vorticity equation and the integral-series far-field streamfunction condition-have 
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Figure 8. Vortex-shedding frequency for a circular cylinder 

allowed successful numerical resolution of the delicate vortex-shedding structures in the near 
wake of a circular cylinder. The direct elliptic solver applied to the Poisson equation of the 
streamfunction also contributed to the efficient numerical solution of the otherwise lengthy and 
time-consuming flow computation. 

As a consequence, numerical results in good agreement with the earlier measured data have 
been obtained in the Reynolds number range 50-200. The change in the vortex-shedding pattern 
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claimed by the experimentalists is supported theoretically by means of numerical streaklines and 
by the oscillation amplitude of the force coefficients in the limit of two-dimensional flow physics. 
The present study revealed that neither the change in the vortex-shedding pattern nor the two- 
dimensional freestream disturbances are responsible for the shedding frequency mode transition: 
the authors could not observe any mode transition despite a variety of significant artificial 
disturbances introduced into the freestream. The mode transition may thus be caused by certain 
three-dimensional mechanisms, e.g. the oblique shedding due to the sidewall effect as shown by 
Williamson.” 
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